less coordinates; Ry, minimum cross section of the region of integration; R, coordinates of the lateral boundary
of the region over the r axis; L, length of the region of integration over the x axis.
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DIFFUSION SLIP OF A GAS
II. APPLICATION OF THE METHOD OF THE
THERMODYNAMICS OF IRREVERSIBLE PROCESSES

S. F. Bakanov, B. V. Deryagin, UDC 533.72
and V. I. Roldugin

A method is proposed for thermodynamic calculation of the diffusion slip coefficient.

A system of equations was obtained in [1] to determine small complements to equilibrium (Maxwell)
distribution functions for the components of a binary gas mixture flowing slowly in a plane-parallel channel
when the temperature and pressurc of the gas are held constant. This system was then solved on the assump-
tion that the concentration of one of the components was trivial. This approximation made it possible to con-
vert the system of eight equations into two systems of four equations each, complete the analytical solution
to the problem, and calculate the diffusion slip coefficient Kpg by directly computing the mean mass velocity
of the gas resulting from concentration gradients of the mixture components.

Also of interest is another method of calculating the slip coefficients, based on the use of the methods
of the thermodynamics of irreversible processes [2, 3]. Correct realization of this method — apart from a
purely formal proof of the directly obtained result — makes it possible to extract important information on the
physical nature of the phenomenon and opens up possibilities for experimental measurement of the effect on a
new basis.

1. We will examine the problem of the flow of a binary mixture of gases in a plane-parallel channel
with a distance 2d between the plates. Let the plates forming the channel be brought into relative motion of a
velocity V by a force F. Given constant pressure and temperature in the channel, if we create a gradient in
the concentration of the components of the mixture in the channel, then the total entropy produced in such a
system may be written in the form

F.v
AS:’T+k<u1—uz>V”1’ 1)
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where <u;-u,> is the difference in the velocities of the mixture components integrated over the channel cross
section; V = V;-V;, relative velocity of the plates; F, force acting on a unit area of the surface of the plate 1;
ny, number of molecules the first type in a unit of the volume.

Proceeding on the basis of Eq. (1), we can write the following phenomenological equations of motion:

V=1Ly + Ly,

(2)
F

Euy—u, ) =Ly + Loy,

Meanwhile, in accordance with the Onsager principle, the relation between the kinetic coefficients I, = Ly,
should be satisfied.

It can be seen from the first equation of (2) that relative motion of the plates may also occur in the ab-
sence of external forces if there is a gradient in the number of particles of the mixture components directed
along the channel. The velocity associated with the relative motion can be determined by assigning a gradient
for the concentration of the components and finding the molecule distribution function from the Boltzmann
equation. Here, in the case where the mean free path of the molecules is much shorter than the distance be-
tween the plates, V is associated with the difference in the velocities of diffusion slip of the gas relative to
the first and second plate.

We can also take an indirect approach — use the symmetry properties L, = Ly,. In the last case, it is
necessary to determine the value of <u,-u,>, resulting from the relative motion of the plates under the in-
fluence of the force F. This approach will also be used below to calculate the diffusion slip velocity.

2. TFinding the relative velocity of the components in the given formulation reduces to solving the Cuett
problem for a homogeneous gas mixture. We will place the origin in the middle between the plates in such a
way that the top plate moves in the positive direction of the z axis, directed along the channel, at a velocity
V/2 and the botfom plate moves at the same velocity in the opposite direction.

Again, as in [1], we will limit ourselves to the case of a small addition of the second component, i.e.,
we will assume that the inequality n,/n <<1 is satisfied. Let us represent the corrections ¢;(x, cj) to the
equilibrium functions fi(o) in the form of expansions {1] (e; is the dimensionless velocity of molecules of type
i; the x axis is directed across the channel):

P (%, &) = ;—2 PPy (3}, @
%

where Pplci) are certain velocity polynomials; ukl) are functions which must be determined. In accordance
with the assumption of a trivial number of molecules of the second type, we set a(!) = ap, () + ,/n) ;.. Then
system (4) from [1] reduces to two systems. The first (corresponding to ny/n = 0) has the form

3
3
> (N[k — ﬁé’) o) (x) =0, [=0—3.

pane’ Ox

(4)

This system of equations will contain functions describing the behavior of only the first component and, in the
approximation being examined, it coincides with the corresponding system for the flow of a simple gas [4].
The second system, obtained for ak(Z) with allowance for the first nonzero approximation of nz/ n, is as follows:

D [(KQNW — M},f”) a2 (1) — ath) (1) Mgz”] ~0,1=0—3. (5)
=0
The boundary conditions have the form
) (d) = —-2—3—6- [ (d) + 2 u,,), )
o) (d) = 211 o) (d),
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where ¢ is the fraction of molecules of type i diffusely reflected by the channel wall, uyj = 1/2 V/V2KI/m;.
It is easy to see that the boundary conditions for each of the components are independent.

The solution of system (4) with boundary conditions (6) is known. We present the result obtained in [4]

below: a(l)z{Ahx+ﬁk shayx, =0, 2,
RO\ dp B chagr, k=1, 3, (7)
where .
4
A - 1/2Vn.x“>( VE st —setd):
AU__— Z(I)A37 Al Af)*—O '
Vn n 4Vn T
Pr=— Bs; Be= V Bo = Sz‘ T £ — VQ AR
4 £ Upr
=— ; Ag=—fschad shayd;
Bs 2 9—e D 3 Ps ch apd + 5 e Pasha,
SENNCYE Y 4 7 FYPRRIC S ) a Bt )
D=_— Gy - ch etod G sha,d] + Va ‘chaod Y — shayd) .

The solution to system (5) is the superposition of the general solution of the homogeneous system and the
particular solution of the inhomogeneous system. For the first we have

2 shax, k=0, 2 (8)
(2) C . N ] s )
% gl Vi {cha,-x,; k=1, 3,

where a, and o, are roots of the characteristic equation of system (5). It should be noted that the roots aj
and coefficients Y kj coincide with the corresponding values in [1].

The particular solution of the inhomogeneous system is the sum of the distribution functions in the gas
volume and in the Knudsen layer, and the complete solution of system (5) is therefore written in the form

Bux -+ fashagr + ¥ Crinsshayx, k=0, 2,

al2) =
§ Bk+fkchaox+26mj chajx, k=1, 3,
i

where the coefficients fj; are the solution of the system

3
2 (KoN oo — MED) [ = Gy,

Re=0

and the constants Cj are found from boundary conditions (6).

The quantities By and G; have the form

K1y my_ MY
Bo:l/ - 4, Ba*Aa[ nM(IZQ,Q) my - M(22) ’

Bi:BzzG;;:O, Goz_% If: B (V“ M(12)~2M§122)),
6= 1 b K gy am),

1 K, (12) (12))
Gy=— — 22 | — M —2M .
2 2 " ( V;l'[ 02 22

It should be noted that the solution to (9) was obtained at different values of oy, o4, and @,. Agreement of ¢,

with o, or a, is a special case of little interest, while o, = o, is possible only under the condition that the
mass of the molecules of the first component be equal to zero.
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TABLE 1. Diffusion Slip Coefficients at g = ¢, =1

i, 01/012
mebm | 0,2 | 0,4 | 0.6 | 0.8 ] to |12 | re | 1 | 1.8

Q0,1 6,45 6,56 6,35 5,80 5,00 3,97 2,73 1,29 {—0,347
0,2 2,84 2,72 2,50 2,17 1,74 1,22 0,606 |—0,101{—0,900
0,3 1,49 1,39 1,22 1,00 0,718 0,378 | —0,0189|—0,474 | —0,988
0,4 0,828 0,746 0,620 0,454 0,248 | 0,00275; —0,283 1 —0,609 | —0,977
0,5 0,456 0,388 0,288 0,158 0,00 |—0,187 |—0,403 | —0,650 | —0,927
0,6 0,207 1,158 0,0802,—0,0194;—0, 141 |-—0,285 | —0,452 | —0,642 | —0,856
0,7 0.0540, 0,0162!—0,0421!—0,118 |—0,212 |—0,323 | —0,452 | —0,598 | —0,762
0,8 |—0,0433 —0,0689 {—0,110 |—0,165 |—0,233 |—0,315 | —0,410 | —0,519| —0,461
0.9 —0,120 | —0,127 |—0,143 |—0,171 |—0,210 |—0,261 {—C,321 | —0,391 | —0,470

3. Let us now proceed to the calculation of the velocity of diffusion slip. The relative velocity of the

components of the mixture
d
1
(U—up ) = fdx,[“g f(lﬂ)CP1V1dV1—
fly
—d

aftgr substitution of the expansions (3) of the functions ¢; in (10) may be expressed through the coefficients
ay (1) in the following manner:

(20) %Vzdvz] (10)

d

(W= Do, g = 8 i j [V }{aw + afh— l,/ Zl (Vﬁagz)_}_ a&a))]
2

—d

B kT Ay K, @ Ve |
B 8 qun, 2 A T e %

Ji—d

(11)

In obtaining the last equation, we used the first equation of system (5) and Egs. (7) and (10) from [1]. The
following expression is obtained for F:

nkT

F= 5‘ U1x01zf§0)(P1dV1 = 45 (12)

(the small complement proportional to n,/n is discarded). From this and Eq. (2) we have

2 T d
Ly = l _ KT wK, (0(12’ 4 _V?”_ a§2>)

8 amy M —d

(13)

s

while the relative velocity of the plates resulting from the concentration gradient in the absence of an external
force is equal to

V:_g_ |/2kT _V&x{_agﬂ(d)%—%ﬁ— ag“’)(d)—-[ Y (—d) + VTE a? ( d)}}, (14)

My An2M§Y

i.e., it is the difference of certain velocities calculated on the surfaces of the first and second plates, res-
pectively.

It is apparent from (14) that if the accommodation coefficients of the molecules on both surfaces are the
same, then no relative motion of the latter under the influence of a concentration gradient will occur.

The velocity of the plates relative to the gas can be obtained from the following reasoning. In the case
ajd > 1 (no overlapping of the Knudsen layers), as already noted, the relative velocity of the plates V is the
d1fference between the velocities of slip of each of them relative to the gas: V = u, (J)-uci(!). From this and

. (14), the diffusion slip velocity upg is equal to

7t 2 kT vinKs . V= ,
e = ul) ==y ‘/_mf_ W’ <¢<12) (d) + 5 (d)j 4+ C,, (15)

where C; is a constant independent of the character of the interaction of the gas with the surface of the solid.
It is therefore the same for each surface. To determine its value, we will use the result from [5]. At g0,
the slip velocity is equal to
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nni, 1= 1/ €y . (16)
Uy (e 0) = Dy /» p - Vi -
Py 1+ Ny l/ 2 €a
i 1y my 2
Or, considering the condition ny/ n <1 and assuming p,; > py, we have
m, &, /" m,
Uy (e; — 0) = Dp( T e ]/ y )Vln ny. 17
Under the same conditions, Eq. (15) takes the form
1y €, 18
ps = Du l,/ s e vinn 4+ Cs, (18)

where, in accordance with the first approximation of Chapman—Enskog, we have introduced the diffusion co-
efficient Dy, (see [1]).

Comparison of (17) and (18) gives us the constant in Eq. (15). Finally, we have

Tm, e 2—¢
uys= Kpg Dy Inng = Dy —— : L X
ps ™ NpsF1aV DG v Inn, l/ m, 6, . 2—s,

Fo+—9 _ H (
) 2_,.81 l+.

It is readily seen that the coefficients of diffusion slip obtained by direct {1] and thermodynamic calcula-
tions are of the same form. Meanwhile, the coefficients F;, Q;, and Q, in these calculations are expressed
in the same manner through the parameters yy;. Agreement of the coefficients Hi*, Hy*, and Q,* with Hy, H,,
and Q; obtained in [1] was established by calculating them numerically at different values of mass and cross
section for the gas-phase molecules.

The final result confirms the conclusion reached in [6] concerning the method of constructing a system
of moment equations, making it possible to exactly sat1sfy the Onsager reciprocal relations even using an ap-
proximate solution.

Table 1 presents values of Kpg for different ratios of molecule mass and diameter.

NOTATION

Vi, V,, velocities of first and second plates; k, Boltzmann constant; T, gas temperature; Dy,, inter-
diffusion coefficient of the gas mixture; Z km(l) Mkm(ll), moments of the Boltzmann collision integral; Kpg
and upg, coefficient and velocity of diffusion slip; nj, number of particles per unit volume; mj, mass; 0;,
diameters; £j, accommodation coefficients of the type i molecules.
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THERMODIFFUSIOPHORETIC CAPTURE OF AEROSOL
PARTICLES IN A PLANE CHANNFL WITH NONUNIFORM
TEMPERATURE

M. F. Barinova and E. R. Shchukin UDC 533.72

The article theoretically studies the process of capturing aerosol particles from a laminar
stream of a binary gas mixture inhomogeneous in temperature and concentration passing
through a plane channel with nonuniform temperature.

Aerosol particles are settling in a channel through which passes a stream of a binary gas mixture; its
first component consists of molecules of some volatile substance condensing on the lower plate with a temper-
ature Ty that is lower than the temperature of the upper plate T,. We examine the case of steady-state motion
of the gas stream where we may neglect the influence of the inlet part on the distribution of mass velocity, tem-
perature, and concentration of the components of the gas mixture. The theory of capture is devised for gas
mixtures with similar molecular masses where the coefficients of viscosity, thermal conductivity, and diffu-
sion depend only weakly on the concentration of the substances of which the gas mixture is composed. Among
such gas mixtures is the steam—air mixture consisting of molecules of air and water vapor.

The aerosol particles entering the channel begin to move toward the surface of the lower plate along a
path described by the differential equation of motion of aerosol particles

dxlve = dzlv,, 1)

where vy and v, are the x~ and z-components of the velocity of the particles. The velocity of steady-state
motion of the particles relative to the channel walls is composed of the velocity of mass motion of the gas u,
the speed of diffusiophoresis due to nonuniform distribution of the concentration vy [1, 2], the velocity v due
to nonuniform distribution of the temperature T [1, 2], and the gravitational velocity Vgt

D 9 2
v:u—i—VD—}—VT—i-Vg:U—i—ZfD—gradci'-fr gfadT—“"g—fggPi %ﬂx, (2)
v

Co

Y

where ¢; = n;/n; ¢; = ny/n; n=n; +ny; oy and n, are the concentrations of molecules of the first and second

kind, respectively; my and m,, molecular masses of the first and second component, respectively; pi, density
of the substance of the particle; ny, unit vector. The scalar coefficients fp, fr, and fg depend on the geo-
metrical dimensions of the particles, on the phase composition of the substance of the particles, on ¢y, ¢, T,
and on the molecular properties of the gas mixture. We do not present here the explicit form of the expres-
sions for the coefficients fD, fT, and f, because in the general case these expressions have a fairly cumber-
some form. The expressions for fp, f, and fy can be found in [L-4]. In the model of gas flow examined here,
the distributions of uy, uy, T, and c¢; depend only on the x-coordinate. Therefore v, =u,, and vy is described
by the expression

z?'

In (1 —cp) — viz

Ux:ux+UDx+UTx+vgx=ux +fD Dlg

2 R2
In7T—-2- ; . (3)
- 9 gl ep; o
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